低温封着用粉末ガラス①

封着用ガラスは低軟化点ガラス粉末と特殊なセラミック粉末をブレンドしたものです。ガラス粉末とセラミック粉末の組み合わせとブレンド比を変えることにより、種々の封着温度と熱膨張係数に対応できます。

アルミナ(膨張係数が約70×10⁻⁷/K)のDIPやQFPにはLS-2010が広く使用されています。また特に低温封着が好まれる水晶振動子用のSMDパッケージには封着温度が380°CのLS-1401Sが使用されます。

低膨張セラミックスの窒化アルミ (膨張係数が約 $45\times10^{-7}/K$) などにはLS-3051Sが使用されます。

シリコン(膨張係数が約35× $10^{-7}/K$)にはLS-1301やBF-0901が使用されます。

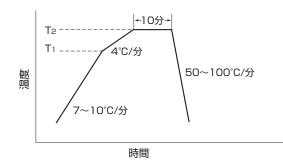
●特性

適用			アルミナ		 窒化アルミ、ムライト、シリコン		
特性/ガラスコード			LS-1401S	LS-2010	LS-3051S	LS-1301	BF-0901
封着温度		°C	380	435	430	450	560
誘電率	1MHz,25°C		45.0	12.5	16	45.5	11.1
$ an \delta$	1MHz,25°C	×10-4	38	34	41	60	19
熱膨張係数	30~250°C	×10 ⁻⁷ /K	71*1	65	51	41	49* ²
転移点		°C	258	313	303	315	430
軟化点		°C	355	400	390	390	528
密度		×10 ³ kg/m ³	7.02	5.67	5.95	6.77	4.69
体積抵抗率 Log p	150°C	Ω·cm	6.2	12.4	12.7	12.0	13.3
熱伝導率		W/m·K	0.98	1.45	1.24	0.84	1.47
比熱		×10 ³ J/kg⋅K	0.34	0.41	0.38	0.35	0.46
耐酸性	20%H2SO4,70°C,1min 10%H2SO4,20°C,10min 10%HCl, 20°C,10min 10%HNO3, 20°C,10min	mg/cm ² mg/cm ² mg/cm ² mg/cm ²	_ _ _ _	0.8 0.5 1.9 120	1.1 0.9 2.7 120	0.1 0.1 0.5 123	_ _ _ _
色調			黒	褐色	黒	黒	緑
組成系			PbO·B2O3 (複合系)			Bi2O3·B2O3 (複合系)	

^{*1:}熱膨張係数は測定範囲30~200℃

^{*2:}熱膨張係数は測定範囲30~300℃

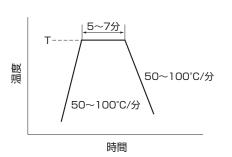
上記以外の特性、鉛フリー品についてもご相談ください。


●使用例

[1]印刷と乾燥(LS-1401Sは除く)

粉末ガラスにビークルを加え、十分に混練してペーストを作る。ビークルは低分子量のアクリル樹脂をターピネオールに5%溶解させたものが適当である。印刷用スクリーンは、ステンレス製(80~100メッシュ)を使用し、乾燥は120℃で10~20分間行う。必要な塗膜厚になるまで印刷と乾燥をくり返す。

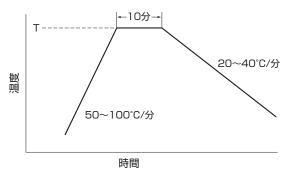
[2] 仮焼成


仮焼成は塗膜中の樹脂を除去するために空気中または酸素中で行う。アクリル樹脂の分解、燃焼は320~380℃で最も活発なので、この温度範囲では昇温速度をゆるやかにする。ピーク温度で約10分間保持する。

ガラスコード	T1(°C)	T2(°C)
LS-1401S	250	350
LS-2010	320	390
LS-3051S	310	380
LS-1301	310	400
BF-0901	350	530

[3]リード固着

空気中で行い、固着温度(T)で5~7分間保持する。



ガラスコード	T(°C)
LS-2010	435
LS-3051S	430
LS-1301	450

なお、ヒーターブロックの場合、ブロック表面温度は固着温度よりも30~50℃高く設定し、保持時間は1~2分が適当である。

[4]封着

空気中または窒素中で行い、封着温度(T)で約10分間保持する。

ガラスコード	T(°C)
LS-1401S	380
LS-2010	435
LS-3051S	430
LS-1301	450
BF-0901	560

低温封着用粉末ガラス②

封着用ガラスは低軟化点ガラス粉末と特殊なセラミック粉末をブレンド したものです。ガラス粉末とセラミック粉末の組み合わせとブレンド比を 変えることにより、種々の封着温度と熱膨張係数に対応できます。

1. 複合系

●短時間で各種ガラス基板や金属との封着、接着が可能です。

2. 結晶性

- ●結晶性ガラスは軟化流動したガラス中に結晶が成長し固化するものです。
- ●再熱加工時での形状維持が可能です。

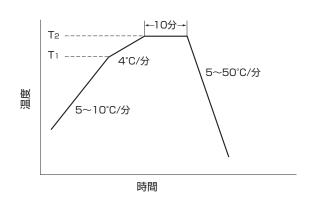
●特性

特性 / ガラスコード			LS-3075	LS-3081	LS-0118	LS-0206	LS-7105	BF-0606
封着温度	\mathbb{C}		450	410	430	450	450	485
熱膨張係数 30~250℃	× 10 ⁻⁷	/K	36.5	74	72.5	72	85*	73*
密度	× 10 ³	kg/m ³	6.91	6.89	7.05	6.82	6.37	6.05
転移点	$^{\circ}$		300	300	317	325	_	365
屈伏点	$^{\circ}$		330	320	337	353	_	393
軟化点	$^{\circ}$		_	365	390	410	400	450
体積抵抗率 Log p	150℃	Ω·cm	10.8	12.2	11.2	13.2	10.4	12.0
色調			黒	黒	黒	黒	黒	緑
組成系			PbO·B ₂ O ₃ (複合系)	I	PbO·B ₂ O ₃ (複合系)	PbO·ZnO·B ₂ O ₃ (結晶性)	Bi ₂ O ₃ ·B ₂ O ₃ (複合系)
適用		無アルカリガラス	ソーダ板ガラス、50 合金、426 合金					

^{*}熱膨張係数は測定範囲30~300℃

上記以外の特性、鉛フリー品についてもご相談ください。

●使用例

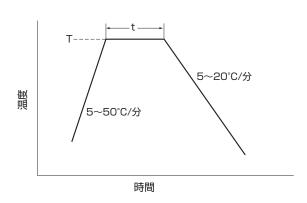

[1]印刷と乾燥

粉末ガラスにビークルを加え、十分に混練してペーストを作る。ビークルはアクリル樹脂をターピネオールに5 %溶解させたものが適当である。

印刷用スクリーンは、ステンレス製(80~100メッシュ)を 使用し、乾燥は120℃で10~20分間行う。

[2] 仮焼成

仮焼成は、塗膜中の樹脂を除去するために空気中または酸素中で行う。バインダの分解・燃焼は320~380℃で最も活発なので、この温度範囲では昇温速度をゆるやかにする。ピーク温度(T2)で約10分間保持する。



ガラスコード	T1(°C)	T2(°C)
LS-3075	320	380
BF-0606	350	450
LS-3081	320	380
LS-0118	320	380
LS-0206	320	400
LS-7105	320	390

[図1]仮焼成プロファイル

[3]封着

封着は常圧の空気中または窒素中で行う。

ガラスコード	T(°C)	t(分)
LS-3075	450	10
BF-0606	485	10
LS-3081	410	10
LS-0118	430	10
LS-0206	450	15
LS-7105	450	20

[図2]封着プロファイル